

Livrable D3.1
Semantization, Storage and Reasoning

over RDF Streams

1

Statut

Niveau dissémination Publique

Date d’échéance Mois 8, ??/??/2017

Date de soumission Mois 8, ??/??/????

Work Package 3

Tâche T? titre

statut d'approbation Draft

Version 0.1

Nombre de Pages 1

Nom du fichier D?

2 Historique
Version Date Revu par

0.0 - -

0.1 - -

3 Auteurs
Organisation Nom Contact

UPEM - LIGM Jérémy Lhez jeremy.lhez@u-pem.fr

UPEM-LIGM Olivier Curé olivier.cure@u-pem.fr

Projet WAVES 2 D2.1 – titre de livrable

4 Résumé
Ce livrable correspond à un état de l’art sur les thèmatiques de la tâche 3 du projet WAVES,

c’est-à-dire la sémantisation, le stockage et le raisonnement de flux RDF. L’objectif du

document est donc d’identifier, de décrire et d’évaluer des travaux et systèmes dans ces

trois domaines. Après une introduction situant les opérations de la tâche 3 dans le contexte

de WAVES, nous dédions une section à chacune de ces trois sous-tâches.

N.B.: le reste du document est rédigé en anglais.

Contenu

Statut

Historique

Auteurs

Résumé

Introduction

Semantization

6.1 Introduction

6.2 Systems

6.2.1 RDF Refine

6.2.2 Karma

6.2.3 Data lift

6.2.4 Summary

RDF storage

7.1 Introduction

7.2 Native vs non-native RDFstores

7.2.1 Native approach

7.2.2 Non-native approach

7.3 Distributed RDF stores

7.4 Summary

Projet WAVES 3 D2.1 – titre de livrable

Reasoning over RDF streams

8.1 Reasoning

8.2 Reasoning systems

8.2.1 C-SPARQL

8.2.2 IMaRS

8.2.3 TrOWL

8.2.4 EP-SPARQL

8.2.5 Streaming SPARQL

Glossaire

Bibliographie

Projet WAVES 4 D2.1 – titre de livrable

5 Introduction
This deliverable is part of WAVES's Task 3 which is dedicated to semantizing and reasoning

over heterogeneous data streams as well as storing RDF triples, quads (standard triple with a

graph name or a temporal dimension) and 5-tuples (standard triple with both a graph name

and a temporal dimension). Figure 1 highlights the impact each of those operations have in

the overall WAVES processing workflow. The purpose of this document is to provide a state

of the art on these different operations. This approach should help in designing an efficient

system by learning from conducted research, by using some existing methods and open

source systems.

In this deliverable, we consider that the data collection process is supported by a data

provider, e.g.,Ondeo-Suez. These data are obtained from some sensors and are formalized

using a certain format, e.g., CSV, XLS, XML, JSON. In order to be integrated within the

system, they need to be transformed into RDF triples (quads or 5-tuples). During this

transformation step, some filters or sampling operations can be performed. We consider

that the characteristics of the input sensors are known in advance and that a set of rules are

established to support these transformations. These rules may use some static ontologies

which are stored in a RDF store. Using these ontologies, a set of reasoning tasks are

executed to detect anomalies and to support decision taking.

In the remaining of this document, the semantization, storage and reasoning aspects are

each considered in different sections. Note that due to the innovant character and high

activity of these research fields, this document is expected to evolve during the three years

span of the project.

Projet WAVES 5 D2.1 – titre de livrable

Figure 1: Waves processing steps

6 Semantization

6.1 Introduction

Semantization aims to provide some semantics to the different data items collected from

sensors and transformed during a first stage, namely the “collecting, filtering and sampling”

box of Figure 1. Hence its objective is to relate data sources to some ontologies. These

ontologies are stored in an RDF repository corresponding to the database icon at the bottom

of Figure 1 (and which is the subject of the next section). This semantization task is related to

the work on schema and ontology matching and mapping [5], [13]. Nevertheless, certain

aspects of WAVES ensure that we do not need the complete machinery of standard

matching/mapping systems. In particular, in WAVES, we can assume the following aspects:

• the input source is represented as n-tuples (with n=3, 4 or 5). In contrast, in schema

and ontology matching, different data models are considered as the input, e.g., relational

databases, XML documents, CSV, XSL.

• the kind of information stored in our n-tuples can be quite numerical and specific

to a scientific domain, , e.g., pH or pressure measures. This aspect makes the data linking to

general purpose, Open data ontologies difficult or impossible. That is, we will need to access

Projet WAVES 6 D2.1 – titre de livrable

ontologies specified in the contest of the project. For instance, in our potable water use

case, we will develop ontologies on the different kind of sensors Ondeo Suez is using. It will

contain information such as the brand, the model, precision, autonomy, etc. of the sensors.

A common characteristic of schema/ontology matching and mapping is the semi-automatic

nature of this running process. That is human interactions are required to produce high

quality results. This applies to our semantization solution where a domain expert needs to

provide some mapping assertions between the schema of an input document and a set of

ontologies. In order to perform these operations semi-automatically, we are interested in

tools that enable to map ontology concepts and properties to attributes of a given schema.

In the next section, we present some existing tools.

6.2 Systems

6.2.1 RDF Refine

Open Refine (formerly Google Refine) is defined by its creators team as a ”tool for working

with messy data, cleaning it up, transforming it from one format into another” . This system 1

runs as a Web application, i.e., in a Web browser. This enables for a user-friendly experience

with the system. Intuitively, the end-user can correct and transform data by directly

interacting with a spreadsheet-like presentation. Some simple statistics on presented data

guide the user through the cleaning process. It is also possible to link some data columns to

a database like Freebase. Google Refine can handle several data formats that can be

represented in a tabular form but is not adapted to link RDF data to external ontologies such

as those of the LOD.

1 https://code.google.com/p/google-refine/

Projet WAVES 7 D2.1 – titre de livrable

Figure 2: RDF refine schema alignment screenshot

The RDF Refine [27] tool is an open-source, free extension of Google Refine. The tool is

developed at DERI and also runs as a Web application (Figure 2). It proposes to produce RDF

data from different data files (TSV, CSV, JSON, excel, XML, RDF as XML). Several interesting

features are present to support this transformation. One can point to or import an ontology

or use one of the pre-loaded ontologies, e.g., RDFS, OWL, FOAF, to map attributes of the

spreadsheet (generally the first row) to ontology properties. It is then possible with just on

click to generate an RDF document (in Turtle or RDF/XML).

The possibilities of RDF Refine go beyond this simple mapping solution. Reconciliation

enables to point to a knowledge source, e.g.,, SPARQL endpoint, and select a property of

that source for an input attribute. The system then searches for correspondences of the

input data with entries in the selected knowledge base. This approach enables to enrich the

original dataset with links to external knowledge base,e.g., DBPedia. In case, of an

incomplete reconciliation, the end-user can use the cleansing facility which based on some

Open Refine recommendations helps in correcting the data input.

RDF Refine is a user-friendly Web application that benefits from many of the features of

Open Refine. With a fast learning curve, it enables one to be rapidly productive in

transforming some tabular data into RDF triples. The reconciliation functionality enables to

enrich the a given data source with links to external knowledge bases. The system addresses

a one-shot transformation and enrichment approach. This does not correspond to our

Projet WAVES 8 D2.1 – titre de livrable

stream processing concern where one may define a map and use those mapping assertions

to transform thousands of instance files as they arrive in the system.

6.2.2 Karma

Karma [24] is developed as an open source project at the ISI lab of the University of South

California. It maps structured data to RDF according to an ontology an end-user has selected.

In [24], this system is used to map 41,000 objects of the Smithsonian American Art Museum

to DBPedia and Getty vocabularies. Compared to RDF Refine, Karma automates several steps

of the mapping process using a statistical modeling method such as Conditional Random

Field (CRF)[26]. For instance, given an ontology and an input data set, the system proposes

some mapping assertions which can be validated or adjusted through interactions in the

visual interface (Figure 3. The system involves two semiautomatic steps: semantic type

assignment and specification of the relationships between semantic types. A Semantic type

can be an OWL class or the range of a data property. Once the model of a data input is

completed, it can be published as RDF triples or stored in a relational database. In the

context of the WAVES project, Karma has more or less the same limitations as RDF Refine.

That is, it corresponds to a one-shot data mapping and transformation solution and is not

adapted to the processing of streams. Moreover, its CRF approach, although efficient on

textual information, is not adapted to numerical values that we may encounter when

collecting measures from sensors

Figure 3: Karma alignment screenshot

6.2.3 Data lift

Datalift is defined as a catalyser for the Web of data. It has been designed and implemented

in the context of a french ANR (Agence National de la Recherche) by a consortium of eight

Projet WAVES 9 D2.1 – titre de livrable

partners (including academic, industry, institutional and innovation partners). Its principal

goal is to support semantic lifting of raw data on the Web. One of its tasks consists in

converting raw data into RDF conformant to a set of preloaded ontologies. This lift aims to

take you from the ground floor, where the raw data reside, to fourth floor where

interconnected data is accessible. The building of Datalift is constituted as follows. At the

first floor, a set of a catalog of ontolgoies, possibly LOD ones, is stored. At the second floor,

the transformation from raw data (thing CSV, XML, JSON, etc) to RDF is computed by using

the vocabularies of the first floor. The third floor consists of the different repositories that

are storing all the produced RDF data. At the last floor, generated datasets are analyzed to

establish interlinking. The semantization task we are interested in this deliverable is

performed at the second floor of the Datalift architecture. This aspect corresponds to the

OntoMapper module in Datalift and maps RDF data to ontologies.

6.2.4 Summary

by a consortium of eight partners (including academic, industry, institutional and innovation

partners). Its principal goal is to support semantic lifting of raw data on the Web. One of its

tasks consists in converting raw data into RDF conformant to a set of preloaded ontologies.

This lift aims to take you from the ground floor, where the raw data reside, to fourth floor

where interconnected data is accessible. The building of Datalift is constituted as follows. At

the first floor, a set of a catalog of ontolgoies, possibly LOD ones, is stored. At the second

floor, the transformation from raw data (thing CSV, XML, JSON, etc) to RDF is computed by

using the vocabularies of the first floor. The third floor consists of the different repositories

that are storing all the produced RDF data. At the last floor, generated datasets are analyzed

to establish interlinking. The semantization task we are interested in this deliverable is

performed at the second floor of the Datalift architecture. This aspect corresponds to the

OntoMapper module in Datalift and maps RDF data to ontologies.

7 RDF storage

7.1 Introduction

At each stage of the data streaming process, the system needs to access and possibly store

RDF triplets (or quads). Due to the current architecture of the system, we can consider that

several kinds of RDF stores are needed. At least two system categories are suspected to

evolve in the WAVES ecosystem: one solution characterized by a low latency, in-memory,

distributed storage and another one with a more classical disk-based persistence. The latter

may be used in the storage of static, i.e. with a relatively low update rate, ontologies, such as

Semantic Sensor Network (SSN), and knowledge bases, such as Geonames, descriptions of

sensors and associated topologies. The former may be used during the reasoning process to

store temporary inference results. There exists more than fifty RDF Stores(Figure 4, [9]) with

different characteristics. Note that among these systems, several solutions are adapted to

store either RDF triples (standard subject, predicate and object) or quads (subject, predicate,

Projet WAVES 10 D2.1 – titre de livrable

object plus graph name) but, to the best of our knowledge,we do not know of any system

able to store n-tuples with n > 4. In the following subsections we survey the main ones which

will enable us to select the most adapted and efficient stores.

Figure 4: RDF stores ecosystem

7.2 Native vs non-native RDFstores

Among the plethora of system categories presented in Figure 5, we can distinguish between

solutions that are implementing their own storage back-end, denoted as native, and those

that are using an existing database management system, denoted as non-native. Systems

following the native approach generally have to start their development from scratch and

hence heavy design and implementation efforts are needed if one wants to release a ready

for production system. It is not a surprise to encounter the most efficient, in terms of query

and inference performances, solutions in this native category. Compared to the native

storage solution, non-native are less demanding in terms of design and implementation

efforts. Nevertheless, to obtain satisfying query performances the handling of the mismatch

between the two data models, e.g., graph to relational, as well as query translation, for

instance from SPARQL to SQL or some NoSQL query language like CQL, have to be taken into

consideration.

Projet WAVES 11 D2.1 – titre de livrable

Figure 5: Taxonomy of RDF storage approaches

7.2.1 Native approach

The native approach provides a way to store RDF data closer to its data model, eschewing

the mapping to entities of a DataBAse Management System (DBMS), such as relations. It

uses the triples (or quads) nature of RDF data as an asset and enables to tackle the

peculiarities of its graph approach, such as the ability to handle data sparsity and the

dynamic aspect of its schema. These systems can be broadly classified as persistent, i.e.,

disk–based, and main memory–based systems. The persistent disk-based storage is the

prevalent solution to store RDF data permanently on a file system. These implementations

may use well known index structures, such as B-Trees which are extensively used in

Relational DBMS (RDBMS). One may consider that reading from and writing to disks induces

an important performance bottleneck. This consideration has motivated inmemory solutions

which aim to store as much of the data, e.g., RDF triples, dictionaries or ontologies, in main

memory. We then distinguish the standalone and the embedded representations. On one

hand, standalone RDF native representations can be stored, transmitted and processed by

their own means without referring to a specific host. On the other hand, embedded RDF

native representations are part of a specific application/framework and only usable within a

special context. Their representation is only defined on the context of this framework. Here,

the triples are produced by applying a set of transformations [22]. The in-memory storage of

Projet WAVES 12 D2.1 – titre de livrable

RDF data allocates a certain amount of the available main memory to store the whole RDF

graph structure. Like the persistent disk based storage, this approach relies on research

results in the database domain (e.g., indexes or efficient processing) and multiple indexing

based techniques. When working on RDF data stored in main memory, some of the most

time-consuming operations are the loading and parsing of the RDF file, but also the creation

of suitable indexes. Therefore, an RDF store must have a memory efficient data

representation that leaves enough space for the operation of search algorithms. We next

present some systems belonging to the native approach. An important academic system that

has influenced the RDF store community is RDF-3X [29]. It is characterized by a high number

of indexes. RDF-3X stores its triples in the classical triple table approach, i.e., a single triple

table with three columns. In RDF-3X, this huge table does not rely on an RDBMS but rather

depends on its own storage system which has been especially designed for the purpose of

RDF storage. One identified problem with the triple table storage approach is the

proliferation of self joins in SPARQL queries. That is, since all triples are contained in a single

table, joins are performed using ‘copies’ of this table. This can be very costly or even

saturate the main memory of a powerful server since these tables can potentially contained

millions of triples and SPARQL queries can possibly imply many joins.

The following two systems can be considered as production ready. Several storage solutions

have been implemented in the context of the Apache Jena Semantic Web framework. The

Apache Jena TDB system is stated as being faster, more scalable and better supported than

the Jena SDB which is non-native system relying on an RDBMS. It is for instance the system

supporting persistence in the Fuseki SPARQL server. The architecture is built around three

concepts, namely node table, triple/quad indexes and prefixes table. The node table serves

to store the dictionary and follows the standard to string-toid (aka locate) and id-to-string

(aka extract) mapping approaches. Practically, the string-to-id and id-to-string operations are

respectively implemented using B+ trees and a sequential file. A large cache is dedicated to

ensure fast data retrieval during query processing. Triple and quad indexes are stored in

specialized structures and respectively store three and four identifiers from the node table.

B+ trees are used to persist these indexes. The system supports SPARQL Update operations

which are handled using ACID transactions. Finally, TDB supports a bulk load solution which

does not support transaction. The different features contained in Jena TDB, e.g., some

security aspects as well as some APIs (Application Programming Interface), make it a solution

to consider in a production setting. OWLIM (now GraphDB) corresponds to a family of RDF

database systems that is implemented by the Ontotext company. Three implementations are

available: OWLIM-Lite, OWLIM-SE (Standard Edition) and OWLIM-Enterprise. The OWLIM

systems are taking advantage of the Sesame libraries which provide APIs for storing,

querying as well as reasoning purposes. Using such libraries provides support for different

RDF syntaxes, e.g., RDF/XML, N3, Turtle, as well as query languages (including SPARQL).

Hence, it frees RDF store designers in developing their own parsers. The set of APIs provided

by Sesame is named SAIL, standing for Storage And Inference Layer, and is used by several

Projet WAVES 13 D2.1 – titre de livrable

other systems, e.g., GraphDB, BlazeGraph. The first system can be used free of charge while

the last two are commercial products. OWLIM-Lite thrives on small data sets that can be

stored in main memory (around 100 million statements for a server with 16Gb of RAM).

Since all data related operations, i.e., querying and inferencing, are performed in memory, a

basic (N-triples) file-based persistence is deemed sufficient. This aims to support data

preservation and consistency between server starts up. The main memory approach enables

high throughput: it is considered to be three times faster than OWLIM-SE. Nevertheless,

OWLIM-Lite does not propose any query optimization nor advanced features, e.g., full-text

search. OWLIM-SE provides a more advanced persistence layer which is based on binary

data files and several indices. OWLIM-SE aims at data sets ranging around billion triples even

on a desktop machine. Just like in OWLIM-Lite, queries can be expressed in SPARQL or SeRQL

(due to the use of SAIL) but OWLIM-SE provides some forms of query optimizations.

Advanced features such as RDF rank, full-text search (integrated into SPARQL with a

standalone or Lucene approach) and geospatial extension are provided. The OWLIM Lite and

SE share many features. For instance, being implemented as a Sesame SAIL providers,

repositories can be created, loaded and queried through the user-friendly Sesame

Workbench. Triple repositories can also be accessed with external editors such as TopBraid

Composer. Similarly, applications can be developed using either the Sesame or Jena APIs.

The cornerstone of the OWLIM systems is the support for reasoning. This is handle by the

TRREE (Triple Reasoning and Rule Entailment Engine) which is being developed by Ontotext.

Inferences are based on forward-chaining of entailment rules. OWLIM-Lite performs all

reasoning in-memory while OWLIM-SE uses its set of data structures backed by the

filesystem.

7.2.2 Non-native approach

The approach of the latter RDF Store category, i.e., non native, makes use of a database

management system to store RDF data permanently. In terms of provided features, the most

interesting non-native implementations are using a RDBMS to store their data. Such an

approach benefits from years of research and development on these DBMS, this is especially

relevant for systems based on an RDBMS. For instance, most RDBMS are known to have

industrial strength transaction support and security considerations that most native

approaches are lacking. In the RDBMS category, we can distinguish between schema-based

and schemafree approaches. With schema-free, we mean that a single table, denoted

tripletable, is responsible for the storage of all triples. In schema-based, unlike the previous

representation that is quite straightforward, the schema characteristics are used to split the

triple table into different tables based on the RDFS or OWL schema properties or classes. We

can distinguish two major schemas, namely property table and the vertical partitioning

approach. Recently some systems came to light with some NoSQL stores taking care of the

storage back end. The main motivation behind these approaches, at least those based on a

key-value, document or column-family store, is to address the distribution of very large data

sets over a cluster of commodity hardware. Considering the graph database category, they

Projet WAVES 14 D2.1 – titre de livrable

present the qualities of not providing an important mismatch with the RDF data model and

to generally support ACID transactions. But supported partitioning strategies are considered

to be less efficient that for the other NoSQL systems. The Virtuoso system [12] is produced

by the OpenLink company. The database engine was first developed as an RDBMS and

progressively evolved toward the XML and RDF data models. Given the maturity of the

OpenLink RDBMS and efforts provided on the RDF, the system definitely has to be

considered as a production ready solution. Originally following a row-store approach, the

system was recently extended to become an hybrid approach by supporting column-store

features. Later in this section, we will present the swStore system which was in 2007, a first

RDF engine to emphasize the adequacy and efficiency of a column-store type of data storage

for RDF triples. Virtuoso stores quads combining a graph to each triple (s,p,o). It, thus,

conceptually stores the quads in a triples table expanded by one column. The columns are g

for graph, p for predicate, s for subject and o for object. While technically rooted in an

RDBMS, it closely follows the model of YARS [20] but with fewer indices. Several additional

optimizations are added, including bitmap indexing. In this approach, the use of fewer

indices tips the balance slightly towards insertion performance from query performance, but

still favors a query one. Being a popular production ready system implies the existence of

several features. The system also supports stored procedure and built-in function definition

that can be used from SPARQL queries. Finally, SPARQL extensions such as its own full text

search engine, geo spatial queries (using a special type of index which is denoted R-tree),

business analytics and intelligence features and sub queries are supported. Virtuoso

proposes several kinds of licenses. For a single machine deployment, a GPL open source

solution is available.

As a NoSQL system, we can reference CumulusRDF [25] which is an RDF engine that uses the

Apache Cassandra, a column family NoSQL store, as storage back-end. Hence, this RDF store

benefits from the whole Cassandra machinery providing a decentralized, highly available,

scalable storage solution with failure tolerance through replication and failover mechanisms

using a no single point of failure approach. The storage of RDF triples supports the notion of

named graph, i.e., it stores quads, and aims to cover all 6 possible RDF triple patterns with

indexes and to exploit prefix lookups to reduce the number of materialized indexes. In [25],

the authors describe two storage layouts which are denoted as hierarchical and flat. In the

hierarchical layout, an important use of Cassandra’s supercolumn supports the overall

storage organization. Intuitively, a supercolumn is an additional layer of key-value pairs that

occurs in column family. With that solution, the subject, predicate and object of a triple are

respectively stored in the key, supercolumn and column and the value is left unspecified.

Hence, there is a multiple supercolumns, i.e., predicate, for each row key, i.e., subject, and

for each predicate, there is multiple possible columns, each of them storing a single object

value. This provides an efficient SPO index. Two similar indexes are constructed for POS and

OSP, i.e., motivating the distribution over row keys, supercolumns and columns. These 3

indexes are considered sufficient to support the 6 possible triple patterns. Note that, at the

Projet WAVES 15 D2.1 – titre de livrable

time of writing this deliverable, in the latest versions of Cassandra, this option is not

supported anymore and corresponds to the approaches used in HBase and BigTable, i.e.,

providing only the notions of keyspaces, column families and columns. Hence, this

hierarchical storage layout is not adapted to recent Apache Cassandra releases. The flat

layout makes an intensive use of Cassandra’s secondary index solution. In that solution, a

standard key/value model is adopted where the row key is a triple element and the column

key and value correspond to the remaining triple pair. For instance, considering the SPO

pattern, the subject is stored as the row key, the predicate is a column’s key and the object

pair is the column’s value. Since column are stored in a given sorted order, this approach

enables to perform both range scans and prefix lookups on column keys in an efficient

manner. Just like in the hierarchical layout, 2 other indexes are needed, namely POS and

OSP, to cover all possible triple patterns. The POS requires a special attention due to the

distributed approach of Cassandra. The goal is to prevent data skew caused by the

inequitable distribution of triples over predicates, e.g., rdf:type usually represent an

important fraction of the entire dataset. Hence, in the case of POS, setting P as the unique

row key is not an efficient approach, i.e., some very large rows will emerge and be stored on

some given nodes, i.e., possibly exceeding node capacity for some data sets and preventing

efficient load balancing. The proposed solution is based on Cassandra’s secondary indexes.

That is PO is used as the row key for the POS pattern and the remaining S is stored as the

column key. In each row, a special column stores the predicate with a ‘p’ key. This, through

the use of a secondary index on ‘p’, enables to retrieve all values for a given predicate. Note

that this flat layout does not use supercolumns. Recently, CumulusRDF has been extended

with a fourth index to support RDF named graph, i.e., storing quads instead of triples, with

an CSPO index. Curiously, CumulusRDF does not make any use of dictionaries but prefers to

store URIs, literals and blank nodes as column keys and values.

7.3 Distributed RDF stores

Most of the systems mentioned in the previous sections are characterized as centralized,

i.e., storage and processing are handled by a single machine. While being adapted to certain

situations, this type of system architecture suffers from many limitations. For instance, it is

the case for big data workloads that generally address very large data volumes through

distribution and replication. That is data and associated processing, e.g., query ones, are

distributed over a set of machines and a lot of benefits are obtained by replicating those

data fragments over some of these nodes. Hence, for applications facing big data

constraints, a Distributed DataBase Management System (henceforth DDBMS) is required.

DDBMS can be defined as a system where data management is distributed over several

computers in a computer network. This field has long research and development histories in

the relational data model with systems such as Ingres and System R being designed as early

as the beginning 1980s. Mainly due to advances in network computing, e.g., emergence of

the Internet, and computer clusters, these system’s features and capacities have evolved

since then. This has lead to the development of novel distribution approaches and new

Projet WAVES 16 D2.1 – titre de livrable

DDBMS categories, e.g., Peer to Peer (P2P), federated databases. Being an integral part of

the big data ecosystems, RDF is totally concerned with the distribution phenomena.

Distributed RDF stores have benefited from the experience and results obtained in the

relational DDBMS context. Hence, it is not surprising to more or less observe the same

system categories even if the schema-less characteristic of RDF imposes some peculiarities.

Figure 6 presents a taxonomy of distributed RDF stores.

Figure 6: Taxonomy of distributed RDF stores

4Store has been developed by Garlik (now Experian) and is one of the most established

distributed triple stores. It stores quads in so-called storage nodes which handle a segment

of the quad data set. Each such node consists of two indexes. A first one corresponds to a

hash on predicates where the value points to two distinct structures. A new version of

4store, named 5store, is being developed but has been only used within Experian and is not

yet published. This distributed system is based on shared nothing master slave architecture.

It is constituted of processing and storage nodes which persist data fragments in a non

overlapping manner (called segments in the paper but which correspond to our notion of a

fragment). Each machine of the cluster can store one or more fragments. For SPARQL triple

patterns where the subject is not known, the fragmentation approach forces to send the

query to all storage nodes. The allocation method is also based on a simple modulo

operation. The system supports replication of fragments other several storage nodes. In

terms of communication, 4Store permits exchange between Processing and Storage nodes

via TCP/IP with a single connection established per segments between processing and

storage nodes. This enables to process some queries in parallel since several requests can be

sent to different segment. Query processing is coordinated by a single processing node. The

joins of a SPARQL Basic GRaph Pattern (BGP) are executed on this node exploiting access

paths reading data on storage nodes. The query processor is inspired by the standard

relational algebra with specific optimizations related to the selectivity of the bind

operations. Note that 4Store natively supports reasoning services but as we will see in the

next section, they are not compatible with the inferences we would like to conduct in our

streaming environment.

Projet WAVES 17 D2.1 – titre de livrable

Yars2 [21] introduces distributed indexing method and parallel query evaluation methods to

the Yars [20] system, a native system. The cluster is made up of commodity hardware and a

shared nothing architecture. Based on the fact that it stores quads, the system proposes

three different forms of indexes: (i) a keyword index which uses Apache Lucene as an

inverted index to map terms occurring in RDF objects to subjects, (ii) 6 quad indexes

(motivated by the use of prefix lookups), based on sparse indexes are used (index are

in-memory and 6 sorted files are stored on disk and Huffman encoded), (iii) join indexes to

speed up queries containing combinations of values or paths in the graph. The Partitioning

method is hash based. The distributed query processor uses lookup requests performed in

parallel.

In the previous section, we presented the open source single machine version of Virtuoso,

but OpenLink also produces a commercial version which permits the distribution over a

machine cluster. Two partitioning strategies are proposed. The first one consists of a data

replication and hence enables high availability. The second strategy is based on partitioning

that is specified at the index level using a hash function on key parts.

The clustering approach of the MarkLogic system distinguishes between two kinds of nodes:

data managers (denoted as D-nodes) and evaluators (denoted as E-nodes). The D-nodes are

responsible for the management of a data subset while the E-nodes handle the access to

data and the query processing. The same physical machine can act as both kind of nodes, in

fact this corresponds to a single-host environment. In the situation where an E-node fails,

the load balancer just needs to send the query to another running E-node. In case of a

D-node failure, the data is still needed to answer the query. This is can be resolved via a

replication approach (the data fragment stored by the failing system is also stored on some

other known D-nodes) or with a clustered filesystem. Finally, note that MarkLogic uses

MapReduce to ingest, transform and export large volumes of data in a bulk processing

manner.

SHARD (Scalable High-Performance, Robust and Distributed) [33] is a triple store designed on

top of Hadoop. It relies on this framework for both the data persistence and query

processing aspects. Considering data storage, RDF triples are stored in flat files in the HDFS

file system. Each line of these flat files are organized as single key value where the key is the

subject of any triple and the value is a set of predicate/object pairs associated to that

subject. This approach is similar to the way HBase stores its data on disk. This flat file

organization is adapted to the Map Reduce approach which expects key values as entries.

Nevertheless, it is inefficient in terms of data redundancy (since some subjects frequently

appear as the object of other triples) and it provides a single index on the subject. That

second aspect is supposed to taken care of by parallel query processing which uses the

Hadoop framework. Intuitively, each triple pattern of a SPARQL query is handled by an

iteration of a MapReduce operation. The variable binding obtained at one iteration is

assigned to the SPARQL triple patterns that have not yet been executed. A final MapReduce

Projet WAVES 18 D2.1 – titre de livrable

set is performed to filter the distinguished variables (those present in the SELECT clause) and

to remove duplicates.

7.4 Summary

Some of the systems we have described in this section address the issues we expect to face

in the Waves. Concerning the persistent store, adopting the Virtuoso open source edition

seems to be a good option for a first version of the project for the following reasons: the

system is known to be robust and efficient, Atos already has some experience in configuring,

tuning and implementing over this system.

8 Reasoning over RDF streams

8.1 Reasoning

Supporting reasoning services is an important feature in the context of RDF stream

processing. This is rather obvious if one considers that inference services are one of the main

added feature of RDF stores compared to traditional relational database management

systems or NoSQL stores, graph-based ones included [9]. This ability to operate upon explicit

as well as implicit data is a peculiarity of the knowledge base context that we do not find in

the requirements of relational database based stream processing [34].

Reasoning in the Semantic Web has a long history that takes its roots in Artificial Intelligence

and logic. Inferences drawn from ontologies support operations such as concept

classification, qualification of the consistency of a knowledge base, retrieval of the instances

of a given concept, finding the most specific concept an individual is an instance of and

instance checking to name the main ones. They are generally implemented using automata

theory, a translation to predicate logic, resolution-based methods or the semantic tableau

approach. The latter two have been the most widely adopted among existing systems, e.g.,

Fact++, Pellet, HermiT, RacerPro for expressive ontologies, i.e., OWL2DL, and ELK, CEL,

Quonto, Jena for lightweight ontologies, i.e., OWL2 profiles, namely EL, RL, QL, and RDFS.

These systems can not be used out of the box in a stream context due to the near real-time

nature that forces to obtain reasoning results within a given duration. In this situation, a

particular attention is given to the ontology expressiveness/computational complexity

trade-off which should ensure that the relevant inferences can be performed in the defined

time-window. This is the main reason for the adoption of RDFS reasoning, the least

expressive ontology language of the W3C Semantic Web stack, in available systems. Other

ontology languages of the W3C stack, namely OWL2DL and its profiles, are considered too

computationally expensive in the stream context.

Nevertheless, some systems have considered an extension of RDFS, e.g., by introducing

property transitivity, in RDF stream processing. Different types of RDF stream reasoning have

been identified: data-driven, query-driven and hybrid solutions.

Projet WAVES 19 D2.1 – titre de livrable

In the data-driven appraoch, the information contained in RDF streams is extended at

load-time by materializing, a.k.a., saturating, possible inferences. The main limitations of this

approach is the latency implied at data loading time due to the computation of all

deductions and the difficulty to maintain a valid data set in the face of data updates, e.g.,

removing a single information can induce the deletion of an important number facts some of

which can be derived by some other valid data. The main advantage of saturation is the

performance of query processing due to the absence of any overhead. The Virtuoso RDF

database management system is adopting this reasoning approach but does not support the

notion of streams.

This approach can be opposed to query-driven which rewrites, a.k.a., reformulates, the

(continuous) queries in order to retrieve all valid answers. With this solution, the advantages

consist of fast loading times and easier handling of data updates. The main drawback

correspond to slow query answering due to the overhead of reasoning over the data and the

knowledge which is required for all queries. Note that these poor performances are due to

the query evaluation process and not on the query reformulation which is being computed

only once. Moreover, the rewriting can possibly generate a large number of queries, some of

which can be semantically equivalent and syntactically different, resulting in a high rate of

duplicate answers. GraphDB (formerly OWLIM) is an RDF store using this query-driven

solution in non-streaming context.

The latter solution is a combination of the previous two approaches, i.e., a method where

only a portion of the data would be materialized and a part of the query would be

reformulated. Blazegraph (formerly bigdata) is an example of a hybrid system that deals with

traditional, i.e., non streaming, database management.

In these inference services, the order in which the data is processed is not important. This is

not the case in streaming context where the order of stream tuples may imply a certain

interpretation and thus different deductions. We can distinguish between several order

notions. Natural order is the most frequent and generally corresponds to the order in which

stream tuples arrive in the system. In the case of RDF data, a timestamp value to the subject,

predicate, object triple of RDF to form a quad. Some other forms of order, requiring a more

or less involved computation, are also possible, e.g., popularity, frequency. In [38], the

authors present a taxonomy of implemented systems and open research problems in RDF

stream reasoning. They argue that most implemented systems belong to the data-driven

category with a natural order. IMaRS [4] and EP-SPARQL [2] are such systems which

respectively belong to the DSMS and CEP categories. It is recognized that the query-driven

approach is promising due to the static nature of queries in a streaming context. That is, the

reformulation of the query would be performed once and its optimized version could

potentially be executed an infinite number of times. The hybrid, mixing data and query

driven approaches, presents the most important research challenges but also the highest

potential in terms of task adequacy and efficiency. A third dimension for RDF stream

Projet WAVES 20 D2.1 – titre de livrable

reasoning corresponds to the parallel computation of the inference services. In a

non-streaming context, systems such as WebPie [37] and SAOR [23] have been implemented

using the MapReduce [10]. The batch processing nature of MapReduce is not adapted to

handle streams and hence, these systems can not be used in a streaming context. To the

best of our knowledge, parallel systems dedicated to stream processing, e.g., Storm, Spark

Streaming, Samza or S4, have not been used by any RDF streaming processing system

equipped with inference services.

8.2 Reasoning and query processing systems

Simplified table from the paper Streaming the Web : Reasoning over dynamic Data. [28]

8.2.1 C-SPARQL

Continuous SPARQL [3] is one of the main reference in stream processing. It supports

time-stamped RDF triples, continuous queries over streams, and data aggregation. The

streaming data are annotated with expiration time, that are handled in a different structure

which deals with inference (based on validity). Then the reasoner can preserve the

entailment of transitory knowledge.

8.2.2 IMaRS

Incremental Materialization for RDF Streams [4] proposes an algorithm for maintainting the

materialization of ontologial entailments in the presence of streaming information. The

approach depends on the expiration time of the triples. One of themain concepts consists in

annotating each statement in the query window. Intuitively, it indicates when a statement

has to be removed from the knowledge base. The maintenance algorithm is used inside the

time window, and is executed each time the window slides: for each new triple, if there is

some entailment, the algorithm stores the new knowledge. If the triple reaches its expiration

time, it is removed, and the algorithm tries to rederive the entailment; if a derivation is

found, the expiration time of the entailment is updated. This mechanism relies on the ability

of pre-computing the expiration time of each entering stream triple Thus, it is not adapted

to count-based windows approaches.

8.2.3 TrOWL

TrOWL [36] maintains a very expressive ontology, covering OWL2-DL, which makes it better

than IMaRS on the complexity. It uses a DRed approach (Delete and Re-derive) for the

entailments, just like IMaRS, making the maintenance of the materialization of the

knowledge base an easy operation (no need to recompute everything). A comparison

between both systems is not possible, as the tests on each one have not been conducted the

same way. The DRed mechanism of TrOWL relies on a truth maintenance system that stores

a justification for each entailment; with this approach, the program maintains a directed

graph to be used for additions and deletions of entailments. However, computing all the

justifications is costly, and the truth maintenance graph is expensive too.

Projet WAVES 21 D2.1 – titre de livrable

8.2.4 EP-SPARQL

Event processing regroups techniques and programs that allow to control event-driven and

real-time systems, and thus can be useful to process data streams. Event Processing-SPARQL

[2] is an extension of SPARQL that uses the processing of CEP systems; the query language

now contains some binary operators to combine graph patterns (seq, equals, optionalseq,

and equals optional). With the accompanying ​ETALIS (Event TrAnsaction Logic Inference

System) component, complex events are derived from simpler events by means of deductive

rules. ETALIS is based on a declarative semantics, grounded in Logic Programming and is

implemented in Prolog. Due to its root in logic, ETALIS also supports inferences over events,

context, and real-time complex situations (i.e., Knowledge-based Event Processing).

8.2.5 Sparkwave

Sparkwave processes RDF data streams with additional RDF Schema (extended with inverse

and symmetric propertic) entailments. The key contributions are the usage of the RETE

network approach which corresponds to a pattern matching algorithm that has been

developed in the context of production rule systems. Intuitively, the reasoning method

determines which of the system’s rules should be fired. The standard set of RDFS rules is

extended to support the owl:inverseOf and owl:symmetricProperty constructors (onmy 3

additional rules are needed to support both of them). Sparkwave operates on fixed schema

and requires a pre-processing. The system is also limited by the fact that the knowledge base

is retained in main-memory.Finally, the system does not seem to be maintained.

8.3 Summary

Given the presentation of the main RDF stream processing systems, we can consider that

defining an RDF stream processing system which support to reason over expressive

ontologies in a scalable, parallelized manner is an open problem.

In order to identify expected reasoning features of the WAVES system, we need to clarify the

the kind of inferences one expects from the potable water user case of the project.

9 Glossaire
CEP Complex Event Processing

CSV Comma Separated Values

DSMS Data Streams Management Systems

JSON JavaScript Object Notation

OWL Web Ontology Language

RDF Resource Description Framework

Projet WAVES 22 D2.1 – titre de livrable

SPARQL SPARQL Protocol and RDF Query Language

XML eXtended Markup Language

10 Bibliographie
[1] D. J. Abadi, A. Marcus, S. Madden, and K. J. Hollenbach. Scalable semantic web data

management using vertical partitioning. In VLDB, pages 411–422, 2007.

[2] D. Anicic, P. Fodor, S. Rudolph, and N. Stojanovic. EP-SPARQL: a unified language for

event processing and stream reasoning. In Proceedings of the 20th International Conference

on World Wide Web, WWW 2011, Hyderabad, India, March 28 - April 1, 2011, pages

635–644, 2011.

[3] D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle, and M. Grossniklaus. CSPARQL: a continuous

query language for RDF data streams. Int. J. Semantic Computing, 4(1):3–25, 2010.

[4] D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle, and M. Grossniklaus. Incremental reasoning on

streams and rich background knowledge. In The Semantic Web: Research and Applications,

7th Extended Semantic Web Conference, ESWC 2010, Heraklion, Crete, Greece, May 30 -

June 3, 2010, Proceedings, Part I, pages 1–15, 2010.

[5] Z. Bellahsene, A. Bonifati, and E. Rahm, editors. Schema Matching and Mapping. Springer,

Heidelberg, 2011.

[6] A. Bolles, M. Grawunder, and J. Jacobi. Streaming SPARQL - extending SPARQL to process

data streams. In The Semantic Web: Research and Applications, 5th European Semantic Web

Conference, ESWC 2008, Tenerife, Canary Islands, Spain, June 1-5, 2008, Proceedings, pages

448–462, 2008.

[7] M. A. Bornea, J. Dolby, A. Kementsietsidis, K. Srinivas, P. Dantressangle, O. Udrea, and B.

Bhattacharjee. Building an efficient rdf store over a relational database. In SIGMOD

Conference, pages 121–132, 2013.

[8] A. Chatzistergiou and S. D. Viglas. Fast heuristics for near-optimal task allocation in data

stream processing over clusters. In Proceedings of the 23rd ACM International Conference

on Conference on Information and Knowledge Management, CIKM 2014, Shanghai, China,

November 3-7, 2014, pages 1579–1588, 2014.

[9] O. Curé and B. Guillaume, editors. RDF Database Systems: Triples Storage and SPARQL

Query Processing. Morgan Kaufmann, Boston, MA, USA, 1st edition, 2015.

[10] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. In

OSDI, pages 137–150, 2004.

Projet WAVES 23 D2.1 – titre de livrable

[11] D. Dell’Aglio, J. Calbimonte, M. Balduini, O. Corcho, and E. D. Valle. ´ On correctness in

RDF stream processor benchmarking. In The Semantic Web - ISWC 2013 - 12th International

Semantic Web Conference, Sydney, NSW, Australia, October 21-25, 2013, Proceedings, Part

II, pages 326–342, 2013.

[12] O. Erling and I. Mikhailov. Rdf support in the virtuoso dbms. In S. Auer, C. Bizer, C.

Müller, and A. V. Zhdanova, editors, Conference on Social Semantic Web, volume 113 of LNI,

pages 59–68. GI, 2007.

[13] J. Euzenat and P. Shvaiko. Ontology Matching, Second Edition. Springer, 2013.

[14] J. D. Fernandez, A. Llaves, and O. Corcho. Efficient RDF interchange (ERI) format for RDF

data streams. In The Semantic Web - ISWC 2014 - 13th International Semantic Web

Conference, Riva del Garda, Italy, October 19-23, 2014. Proceedings, Part II, pages 244–259,

2014.

[15] S. Gao, T. Scharrenbach, and A. Bernstein. The CLOCK data-aware eviction approach:

Towards processing linked data streams with limited resources. In The Semantic Web:

Trends and Challenges - 11th International Conference, ESWC 2014, Anissaras, Crete,

Greece, May 25-29, 2014. Proceedings, pages 6–20, 2014.

[16] N. F. Garcia, J. Arias-Fisteus, L. S´anchez, D. Fuentes-Lorenzo, and O. Corcho. RDSZ: an

approach for lossless RDF stream compression. In The Semantic Web: Trends and Challenges

- 11th International Conference, ESWC 2014, Anissaras, Crete, Greece, May 25-29, 2014.

Proceedings, pages 52–67, 2014.

[17] M. Gebser, T. Grote, R. Kaminski, P. Obermeier, O. Sabuncu, and T. Schaub. Answer set

programming for stream reasoning. CoRR, abs/1301.1392, 2013.

[18] D. Gerber, S. Hellmann, L. Bühmann, T. Soru, R. Usbeck, and A. N. Ngomo. Real-time RDF

extraction from unstructured data streams. In The Semantic Web - ISWC 2013 - 12th

International Semantic Web Conference, Sydney, NSW, Australia, October 21-25, 2013,

Proceedings, Part I, pages 135–150, 2013.

[19] S. Harris, , N. Lamb, and N. Shadbol. 4store: The design and implementation of a

clustered rdf store. In In SSWS2009: Proceedings of the 5th International Workshop on

Scalable Semantic Web Knowledge Base Systems, 2009.

[20] A. Harth and S. Decker. Optimized index structures for querying rdf from the web. In

LA-WEB ’05: Proceedings of the Third Latin American Web Congress, pages 71–80,

Washington, DC, USA, 2005. IEEE Computer Society.

[21] A. Harth, J. Umbrich, A. Hogan, and S. Decker. Yars2: A federated repository for querying

graph structured data from the web. In Proceedings of the 6th International Semantic Web

Conference and 2nd Asian Semantic Web Conference (ISWC/ASWC2007), Busan, South

Projet WAVES 24 D2.1 – titre de livrable

Korea, volume 4825 of LNCS, pages 211–224, Berlin, Heidelberg, November 2007. Springer

Verlag.

[22] M. Hausenblas and B. Adida. Rdfa in html overview, 2007.

[23] A. Hogan, J. Z. Pan, A. Polleres, and S. Decker. Saor: Template rule optimisations for

distributed reasoning over 1 billion linked data triples. In International Semantic Web

Conference (1), pages 337–353, 2010.

[24] C. A. Knoblock, P. A. Szekely, J. L. Ambite, A. Goel, S. Gupta, K. Lerman, M. Muslea, M.

Taheriyan, and P. Mallick. Semi-automatically mapping structured sources into the semantic

web. In The Semantic Web: Research and Applications - 9th Extended Semantic Web

Conference, ESWC 2012, Heraklion, Crete, Greece, May 27-31, 2012. Proceedings, pages

375–390, 2012.

[25] G. Ladwig and A. Harth. Cumulusrdf: Linked data management on nested key-value

stores. In Proceedings of the 7th International Workshop on Scalable Semantic Web

Knowledge Base Systems (SSWS2011) at the 10th International Semantic Web Conference

(ISWC2011), October 2011.

[26] J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional random fields: Probabilistic

models for segmenting and labeling sequence data. In Proceedings of the Eighteenth

International Conference on Machine Learning, ICML ’01, pages 282–289, San Francisco, CA,

USA, 2001. Morgan Kaufmann Publishers Inc.

[27] F. Maali, R. Cyganiak, and V. Peristeras. Re-using cool uris: Entity reconciliation against

lod hubs. In In LDOW, 2011.

[28] A. Margara, J. Urbani, F. van Harmelen, and H. E. Bal. Streaming the web: Reasoning

over dynamic data. J. Web Sem., 25:24–44, 2014.

[29] T. Neumann and G. Weikum. Rdf-3x: a risc-style engine for rdf. Proc. VLDB Endow.,

1(1):647–659, 2008.

[30] M. Nickles and A. Mileo. Web stream reasoning using probabilistic answer set

programming. In Web Reasoning and Rule Systems - 8th International Conference, RR 2014,

Athens, Greece, September 15-17, 2014. Proceedings, pages 197–205, 2014.

[31] D. L. Phuoc, H. N. M. Quoc, C. L. Van, and M. Hauswirth. Elastic and scalable processing

of linked stream data in the cloud. In The Semantic Web - ISWC 2013 - 12th International

Semantic Web Conference, Sydney, NSW, Australia, October 21-25, 2013, Proceedings, Part

I, pages 280–297, 2013.

[32] Y. Ren and J. Z. Pan. Optimising ontology stream reasoning with truth maintenance

system. In Proceedings of the 20th ACM Conference on Information and Knowledge

Projet WAVES 25 D2.1 – titre de livrable

Management, CIKM 2011, Glasgow, United Kingdom, October 24-28, 2011, pages 831–836,

2011.

[33] K. Rohloff and R. E. Schantz. High-performance, massively scalable distributed systems

using the mapreduce software framework: the shard triplestore. In PSI EtA, page 4, 2010.

[34] M. Stonebraker, U. C¸ etintemel, and S. B. Zdonik. The 8 requirements of real-time

stream processing. SIGMOD Record, 34(4):42–47, 2005.

[35] K. Teymourian and A. Paschke. Plan-based semantic enrichment of event streams. In

The Semantic Web: Trends and Challenges - 11th International Conference, ESWC 2014,

Anissaras, Crete, Greece, May 25-29, 2014. Proceedings, pages 21–35, 2014.

[36] E. Thomas, J. Z. Pan, and Y. Ren. Trowl: Tractable OWL 2 reasoning infrastructure. In The

Semantic Web: Research and Applications, 7th Extended Semantic Web Conference, ESWC

2010, Heraklion, Crete, Greece, May 30 - June 3, 2010, Proceedings, Part II, pages 431–435,

2010.

[37] J. Urbani, S. Kotoulas, J. Maassen, F. van Harmelen, and H. E. Bal. Owl reasoning with

webpie: Calculating the closure of 100 billion triples. In ESWC (1), pages 213–227, 2010.

[38] E. D. Valle, S. Schlobach, M. Kr¨otzsch, A. Bozzon, S. Ceri, and I. Horrocks. Order matters!

harnessing a world of orderings for reasoning over massive data. Semantic Web,

4(2):219–231, 2013.

[39] C. Weiss and A. Bernstein. On-disk storage techniques for semantic web data - are

b-trees always the optimal solution? In Proceedings of the 5th International Workshop on

Scalable Semantic Web Knowledge Base Systems (SSWS2009), pages 49–64, Washington DC,

USA, October 26 2009.

[40] Z. Yang, J. Tang, and Y. Zhang. Active learning for streaming networked data. In

Proceedings of the 23rd ACM International Conference on Conference on Information and

Knowledge Management, CIKM 2014, Shanghai, China, November 3-7, 2014, pages

1129–1138, 2014.

[41] S. Komazec, D. Cerri, D. Fensel. Sparkwave: continuous schema-enhanced pattern

matching over RDF data streams. ​Proceedings of the Sixth {ACM} International Conference on

Distributed Event-Based Systems, (DEBS) 2012, Berlin, Germany, July 16-20, 2012, pages 58-68

Projet WAVES 26 D2.1 – titre de livrable

